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Abstract

New, more accurate values for the time-averaged velocity distribution and the mixed-mean velocity (and thereby the

friction factor) were obtained for fully developed turbulent flow in annuli by numerical integration of the equations of

conservation using a theoretically based correlating equation for the turbulent shear stress. These computed values are

represented almost exactly by simple algebraic equations that may be considered to be predictive rather than correlative

because they have a theoretical structure, are virtually free from empiricism, and are not based on the calculated values.

These predictive expressions agree closely with the most reliable experimental data within their scatter.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Despite many investigations, the existing computa-

tional and experimental results for turbulent flow and

convection in annuli are quite incomplete and uncertain.

The results reported here for flow were undertaken pri-

marily to provide a basis for improved predictions of

convection. However the characteristics of the flow

proved to be of direct interest because of their complete

scope. These values were obtained by numerical integra-

tion of the equations of conservation using a theoreti-

cally based correlating equation for the turbulent shear

stress. The effect of the small degree of empiricism as-

sociated with this form of modeling has previously been

shown to be a negligible source of error in predictions

for round tubes and parallel-plate channels (see, [1,2]).

The primary practical interest in turbulent flow in a

concentric circular annulus is in connection with con-

vective heat transfer in the outer passage of a double-

pipe heat exchanger. Because of the non-linear radial
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variation of the total shear stress within the fluid, the

analysis of flow in an annulus is considerably more

complex than in a round tube or parallel-plate channel

in the laminar as well as in the turbulent regime. As the

aspect ratio (inner diameter/outer diameter) increases

toward unity, the velocity distribution and the friction

factor approach those for a parallel-plate channel in

turbulent as well as in laminar flow. As the aspect ratio

decreases toward zero, the velocity distribution ap-

proaches that for a round tube but never quite attains it

because the velocity remains zero and the velocity gra-

dient finite at the inner wall. Even so, the friction factor

approaches that for a round tube, again in both laminar

and turbulent flow.

As a consequence of its relative complexity, the be-

havior of both flow and convective heat transfer in an

annulus in the turbulent regime is as yet incompletely

characterized and generalized either experimentally or

theoretically. The objective of this investigation has been

to improve upon that description in a quantitative sense

by a combination of theoretical and correlative meth-

odologies. The specific plan has been, first to devise

improved, theoretically based correlating equations for

the turbulent shear stress distribution, second to utilize

such expressions to calculate the total shear stress
ed.
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Fig. 1. Schematic representation of characteristics of turbulent

flow in annuli.
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distribution, the time–mean velocity distribution, and

the time- and space–mean velocity, third to utilize these

latter numerical values and the structure of the corre-

lating equations for the turbulent shear stress to develop

a generalized predictive equation for each of these

quantities, fourth to utilize the computed values for flow

and these predictive and correlative expressions, to-

gether with a correlative or predictive equation for the

turbulent Prandtl number, to calculate numerical values

for the heat flux distribution, the time-averaged tem-

perature distribution, and the mixed-mean temperature,

and fifth to develop generalized correlating equations

for the Nusselt number as a function of the Reynolds

number, the Prandtl number, the aspect ratio, and the

mode of heating at the surfaces. This mission has been

accomplished in large part. The procedure and results

for flow are reported herein. Those for heat transfer will

follow in Parts II–IV.

Lorenz [3] in 1937 discovered experimentally that in

turbulent flow the location of the maximum in the time–

mean velocity distribution in an annulus differs mea-

surably from that for laminar flow. Kjellstr€oom and

Hedberg [4] in 1966 derived integral expressions in-

volving the local turbulent shear stress from which it

may be inferred that the location of the maximum in the

velocity differs from the location of the zero in the total

shear stress as well as from their common location in

laminar flow. They were unable to confirm experimen-

tally the difference in location between the maximum in

the velocity distribution and the zero in the total shear

stress for a smooth annulus, but did succeed for an

annulus with a roughened inner surface, for which the

difference in locations is magnified. Finally in 1972,

Lawn and Elliott [5] confirmed experimentally the non-

coincidence for smooth annuli.

Because, as illustrated schematically in Fig. 1, the

total shear stress is finite at the location where the ve-

locity is a maximum and its gradient is zero, the eddy

viscosity and the mixing length are both unbounded at

that point. Also, because the sign of the velocity gradient

changes at that point while that of the total shear stress

does not, the eddy viscosity and the mixing length are

negative over a small adjacent finite range of the radius.

This ‘‘anomalous’’ behavior occurs for all aspect ratios

and all Reynolds numbers in the fully turbulent regime

(aþ2 � aþ1 P 300). As a consequence of overlooking this

aspect of behavior, no doubt in part because of the

somewhat obscure publications in which the work of

Lorenz and of Kjellstr€oom and Hedberg was reported,

almost all of the theoretical and semi-theoretical pre-

dictive expressions for the time–mean velocity distribu-

tion, friction factor, and Nusselt number in the current

literature are subject to unidentifiable but possibly sig-

nificant error. The only exceptions appear to be the

predictions of flow by Hanjali�cc and Launder [6] using a

k–e–u0v0 model, by Kawamura et al. [7], and Satake and
Kawamura [8] using large-eddy simulation (LES), and

by Chung et al. [9] using direct numerical simulation

(DNS). All of these latter methodologies, except for

DNS, for which the calculations are restricted to rates of

flow barely above the minimum for fully developed

turbulence, invoke the eddy viscosity but avoid its use in

the region of non-coincidence. They also invoke empir-

ical wall-functions.

Because prior work on turbulent flow and convection

in annuli was recently reviewed by Churchill [10], and

because most of the prior predictive results are highly

uncertain owing to the failure to account for the dis-

placement of the maximum in the velocity from that for

laminar flow and/or from the zero in the total shear

stress, a comprehensive review does not appear to be

necessary here. Of course, all directly relevant prior

work is noted in context.

2. Mathematical structure for representation of turbulent

flow

The time-averaged once-integrated force–momentum

balance for the stationary, fully developed a fluid of

invariant physical properties in a concentric, circular

annulus may be written as

s ¼ l
du
dr

� qu0ru
0
z ð1Þ

Here s is the total, time-averaged shear stress in the

z-direction imposed on the fluid at r, the radial distance
from the axis, by the fluid at greater r, l, and q are the
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viscosity and density of the fluid, u is the local, time–

mean velocity, and u0rv
0
z is the time-averaged product of

the components of the fluctuating velocity. Although, in

the turbulent regime, a slight radial gradient exists in the

time-averaged pressure, the axial gradient, �dp=dz, is
independent of radius, allowing the following force

balance to be constructed in terms of a0, the radial lo-

cation of the zero in the total shear stress:

s ¼
�
� dp

dz

�
a20 � r2

2r

� �
ð2Þ

Eqs. (1) and (2) are applicable for the entire cross-sec-

tion, that is, from the inner radius a1 to the outer radius

a2. As indicated in Fig. 1, s, as defined by Eq. (2), is

positive for r < a0 and negative for r > a0. However, for

convenience, the shear stresses on the inner and outer

surfaces are defined as sw1 ¼ sr¼a1 and sw2 ¼ �sr¼a2 , re-

spectively, and are thereby both positive.

Eq. (1) may be re-expressed in the following dimen-

sionless form proposed by Churchill and Chan [11]:

s
sw

¼ duþ

dyþ
þ ðu0v0Þþ ð3Þ

Here, ðu0v0Þþ ¼ �qu0v0=sw, uþ ¼ uðq=swÞ1=2, y ¼ r � a, the
radial distance from the inner wall, and yþ ¼ yðqswÞ1=2=l.
Churchill [12] found that ðu0v0Þþþ ¼ �qu0v0=s was more

tractable than ðu0v0Þþ for round tubes and parallel plates,

but in an annulus this quantity shares the singularity of

the eddy viscosity and the mixing length, and therefore is

not utilized here.

Several relationships that prove to be useful in what

follows may be inferred from Eq. (2), namely

s
sw1

¼ a1
r

a20 � r2

a20 � a21

� �
ð4Þ

sw1 ¼
�
� dp

dz

�
a20 � a21
2a1

� �
ð5Þ

sw2 ¼
�
� dp

dz

�
a22 � a20
2a2

� �
ð6Þ

and

sw1
sw2

¼ a2
a1

a20 � a21
a22 � a20

� �
ð7Þ

Eqs. (1)–(7) are exact within the commonplace restric-

tions placed on the flow and are applicable for all con-

ditions. However, in order to determine ufrg and um for

a specified value of �dp=dz or w, a specified fluid

(characterized by l and q), and specified values of a1 and
a2, empirical relationships are required for ðu0v0Þþ, a0,
and amax. Here, w is the mass rate of flow, and amax is the

radial location of the maximum in the velocity profile.

Kays and Leung [13] correlated experimental data of

various investigations for the location of the maximum
in the velocity distribution in the turbulent regime with

the empirical expression

amax � a1
a2 � amax

¼ a1
a2

� �0:343

ð8Þ

Rehme [14] similarly correlated his own experimental

data as well as that of others for the location of the zero

in the total shear stress for Re ¼ 105 with the expression

a0 � a1
a2 � a0

¼ a1
a2

� �0:386

ð9Þ

These two empirical expressions, both of which are im-

plied to be independent of the rate of flow, are utilized

herein. The experimental evidence concerning this im-

plicit postulate of independence from the rate of flow is

limited, but some indirect support is provided by the

independence from flow of the exact theoretical expres-

sion for amax ð¼ a0Þ for the laminar regime, namely,

amax

a1

� �2

¼ ½ða2=a1Þ2 � 1�
lnða2=a1Þ2

ð10Þ

The numerical results that are presented herein for flow

and convection are subject to some unknown, but pre-

sumably fairly limited, error by virtue of their depen-

dence on Eqs. (8) and (9). Owing to the severe limitation

of DNS in terms of the range of flow, and the uncer-

tainty of all other theoretical models, the general pre-

diction of a0 and amax for turbulent flow from first

principles is not feasible at present. The determination of

improved values or expressions for these two quantities

may eventually provide the basis for updating the results

presented herein for the turbulent shear stress distribu-

tion, the time–mean velocity distribution and the friction

factor, but, as shown herein by means of using Eq. (10)

in place of Eqs. (8) and (9) in test calculations, such

improvements would be expected to be minimal.
3. Correlating equations for the turbulent shear stress

The same general procedure and the same general

form as used by Churchill and Chan [11] to develop a

correlating equation for ðu0v0Þþ for a round tube and a

parallel-plate channel was adapted for annuli, but sep-

arate expressions were necessarily devised for the inner

region, a1 6 r6 amax, and the outer region, amax 6 r6 a2.
Both of these correlating equations have the overall

form

½ðu0v0Þþ�n ¼ ½ðu0v0Þþ0 �
n þ ½ðu0v0Þþ1�n ð11Þ

with an arbitrary combining exponent n of )8/7. On the

basis of direct numerical simulations for parallel-plate

channels, the following asymptotic expression for small

values of yþ is presumed to be applicable for all shear
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flows, including the inner and outer regions of an an-

nulus:

ðu0v0Þþ0 ¼ 0:7
yþ

10

� �3 s
sx

� �
ð12Þ

On the other hand, while an equivalent general asymp-

totic expression for ðu0v0Þþ1 has not been derived directly,

one can be constructed from the following speculative

expression devised by Churchill and Chan [11] for the

time–mean velocity distribution in the turbulent core of

a round tube:

uþ ¼ Aþ B lnfyþg þ C
yþ

aþ

� �2

� ð2Bþ CÞ
3

yþ

aþ

� �3

ð13Þ

Here, A, B, and C are arbitrary constants, and

aþ ¼ aðqswÞ1=2=l. Eq. (13) reduces to the generally ac-

cepted semi-logarithmic expression for ‘‘the turbulent

core near the wall’’ for 306 yþ 6 0:1aþ and conforms to

the necessary condition of duþ=dyþ ¼ 0 at yþ ¼ aþ, as
well as to the speculative asymptote uþc � uþ ¼
Eð1� y=aÞ2 for yþ ! aþ. Here uc is the velocity at the

centerline. On the basis of Eq. (3), it follows from Eq.

(13) that

ðu0v0Þþ1 ¼ s
sx

� 1

�
� yþ

aþ

�
B
yþ

�
þ B
aþ

1

�
þ 1

�
þ 2C

B

�
yþ

aþ

��
ð14Þ

Eqs. (13) and (14) are directly applicable for parallel-

plate channels if aþ is simply replaced by bþ ¼
bðqswÞ1=2=l, where b is the half-width of the channel.

They might therefore be expected to be applicable for

both the inner and outer regions for the ‘‘intermediate’’

case of an annulus.

When Eqs. (12) and (14) are specialized for the inner

region of an annulus, the dimensionless distance from

the wall, yþ, is replaced by rþ � aþ1 , the radius, aþ, by
aþmax � aþ1 , the shear stress at the wall, sw, by sx1, and the

shear stress ratio s=sx by a1
r

a2
0
�r2

a2
0
�a2

1

� �
, resulting in

ðu0v0Þþ0 ¼ 0:7
rþ � aþ1

10

� �3 a1
r

� � a20 � r2

a20 � a21

� �
ð15Þ

and

ðu0v0Þþ1 ¼ a1
r

a20 � r2

a20 � a21

� �
� amax � r

amax � a1

� �

� B
ðrþ � aþ1 Þ

�
þ B
ðaþmax � aþ1 Þ

� 1

�
þ 1

�
þ 2C

B

�
r � a1

amax � a1

� ���
ð16Þ

Here, ðu0v0Þþ, rþ, aþ1 and aþmax are normalized with re-

spect to sx1.
For the outer region, Eqs. (11) and (13) are directly

applicable in terms of s=sx ¼ s=sx2, ðu0v0Þþ, yþ ¼ aþ2 � rþ,
and aþ ¼ aþ2 � aþmax, all normalized in terms of sw2.
However, in order to be compatible numerically with

ðu0v0Þþ for the inner region, it is convenient to re-nor-

malize these two equations in terms of sx1. The result is

ðu0v0Þþ0 ¼ 0:7
aþ2 � rþ

10

� �3 s
sx1

� �
sx2
sx1

� �3=2

¼ 0:7
aþ2 � rþ

10

� �3 a1
r

� � a20 � r2

a20 � a21

� �

� a22 � a20
a20 � a21

� �3=2 a1
a2

� �3=2

ð17Þ

and

ðu0v0Þþ1 ¼ a1
r

a20 � r2

a20 � a21

� �
� a1

a2

� �1=2 a22 � a20
a20 � a21

� �1=2

� r � amax

a2 � amax

� �
B

aþ2 � rþ

�
þ B
aþ2 � aþmax

� 1

�
þ 2C

B

�
þ 1

�
a2 � r

a2 � amax

� ���
ð18Þ

Eqs. (16) and (18) give the same value of ðu0v0Þþ at

r ¼ amax for all conditions and all choices of the arbi-

trary coefficients.

The recent and presumably most accurate experi-

mental data for the velocity distribution in a round tube,

namely those of Zagarola [15], suggest that the values of

the coefficients A, B, and C in Eq. (13) may depend

slightly on the rate of flow, but that 6.13, 1/0.436, and

6.824, respectively, are reasonable mean values. On the

basis of the analogy of MacLeod [16], these same values

are presumed to be applicable for a parallel-plate

channel. Accordingly they are speculated to be directly

applicable for the outer region ðr > amaxÞ of an annulus.

However, for the inner region ðr < amaxÞ, a different

value of C, designated as C0, is proposed in order to

force the expressions for the velocity distribution in the

inner and outer regions to match at r ¼ amax. That is, C0

is evaluated as a function of a1=a2 and aþ2 � aþ1 from

Aþ B lnfaþmax � aþ1 g þ
C0 � B

3

¼ a1
a2

� �1=2 a22 � a20
a20 � a21

� �1=2

A

"
þ B ln ðaþ2

(
� aþmaxÞ

� a1
a2

� �1=2 a22 � a20
a20 � a21

� �1=2
)

þ C � B
3

#
ð19Þ
4. Numerical evaluations

Numerical calculations were carried out for all of the

dimensionless dependent variables for all combinations

of a1=a2 ¼ 0:001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95,



Fig. 2. Computed radial variation of the total shear stress

within the fluid in turbulent flow through annuli of various

aspect ratios.
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0.99 and 0.999 and aþ2 � aþ1 ¼ 150, 500, 800, 1000, 2000,

5000, 10,000, 20,000, 50,000, 100,000, 200,000 and

500,000 but only representative values are presented

herein in graphical and tabular form. Throughout the

balance of the paper, the absence of an additional sub-

script on aþ1 , a
þ
2 , r

þ, yþ, ðu0v0Þþ, uþ1 , uþ2 , uþm , etc. implies

that the quantity is normalized with respect to sw1, while
a subscript of w2 designates normalization with respect

to sw2, and a subscript of wm designates normalization

with respect to the mean shear stress on the two walls,

namely swm ¼ ða1sw1 þ a2sw2Þ=ða1 þ a2Þ. This latter

quantity is of primary practical interest because of its

direct relationship to the axial pressure gradient, namely

swm ¼ 1

2

�
� dp

dz

�
ða2 þ a1Þ ð20Þ
5. Numerical results and predictive expressions

Values of sw2=sw1, amax=a1 and a0=a1, as computed

from Eqs. (7)–(9), respectively, as well as the corre-

sponding values of a1sw1=a2sw2, and swm=sw2 are listed in

Table 1. The value of sw1=sw2 increases as that of a1=a2
decreases, but insufficiently to prevent a1sw1=a2sw2 ! 0

as a1=a2 ! 0. The combined variations of a0=a1 and

sw2=sw1 result, somewhat surprisingly, in swm=sw2 ffi 1 for

all conditions. One consequence is that the Fanning

friction factor based on swm, namely fwm ¼ 2ða1sw1 þ
a2sw2Þ=ða1 þ a2Þ=qðumÞ2wm ¼ 2=ðuþmÞwm, approaches that

for a round tube, as a1=a2 ! 0.
Table 1

Characteristic ratios for annuli based on Eqs. (8) and (9)

a1=a2 0.01 0.1 0.2 0.5

amax=a1 17.91 3.810 2.462 1.441

a0=a1 15.31 3.622 2.398 1.434

sw2=sw1 0.418 0.717 0.810 0.922

ða1sw1Þ=ða2sw2Þ 2.392� 10�2 0.140 0.247 0.542

swm=sw2 1.014 1.036 1.039 1.028

Table 2

Compensatory coefficient C0 for inner region based on Eqs. (8) and (

a1=a2 aþ2 � aþ1

50 500 800 1000 2000 5000

0.01 32.46 12.15 6.059 )1.227
0.05 77.71 7.259 3.988 2.730 )0.373 )3.212
0.1 55.36 6.315 4.227 3.426 1.477 )0.305
0.2 13.03 6.239 5.015 4.548 3.427 2.379

0.5 8.914 6.564 6.119 5.955 5.545 5.153

0.8 7.465 6.740 6.600 6.548 6.417 6.279

0.9 7.123 6.781 6.716 6.690 6.626 6.558

0.95 6.969 6.802 6.769 6.755 6.722 6.680

0.99 6.851 6.817 6.810 6.805 6.795 6.776

0.999 6.825 6.820 6.819 6.817 6.812 6.796
Values of s=sw1 computed from Eqs. (7) and (9) are

plotted in Fig. 2 versus the fractional distance across the

annulus, namely ðr � a1Þ=ða2 � a1Þ, for four values of

a1=a2. The variation is linear for a1=a2 ¼ 1, but becomes

very curved and steep near the inner surface and almost

linear near the outer surface as a1=a2 ! 0.

Values C0, as obtained from the numerical solution of

Eq. (19), are listed in Table 2. As would be expected,

they approach 6.824 as the values of a1=a2 ! 1 and of

aþ2 � aþ1 ! 0. Values exceeding 6.824 are presumed to be

a consequence of the failure to attain fully turbulent

flow, and are shaded as an indication of probable un-

reliability. The unlisted values indicate unsatisfactory

convergence of the calculations in some respect, not

necessarily those for C0. The value of C0, even when

it differs significantly from 6.824, can be inferred from
0.8 0.9 0.95 0.99 0.999

1.120 1.055 1.026 1.005 1.001

1.120 1.054 1.026 1.005 1.001

0.975 0.988 0.994 0.999 1.000

0.821 0.911 0.956 0.991 0.999

1.011 1.006 1.003 1.001 1.000

9)

10,000 20,000 50,000 100,000 200,000 500,000

)5.120
)1.344 )2.265 )3.450 )4.545
1.741 1.150 0.341 )0.374 )1.306 )3.296
4.893 4.635 4.227 3.788 3.120 1.424

6.188 6.069 5.839 5.528 4.974 3.411

6.489 6.414 6.227 5.948 5.423 3.893

6.634 6.575 6.403 6.141 5.626 4.114

6.747 6.694 6.539 6.287 5.785 4.282

6.773 6.721 6.570 6.320 5.820 4.318
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either Eq. (13) or Eq. (22) to influence the calculated

values of uþfyþg only in the inner region near the

maximum in the velocity, and even there only slightly,

since the terms in which it occurs represent the pertur-

bation from the semi-logarithmic dependence due to the

wake.

Although ðu0v0Þþ is the most important quantity in-

volved in this analysis with respect to both flow and

convection, it is unnecessary to present tabulated values

because they may readily be evaluated on-line using Eqs.

(11) and (14)–(18), together with the values of C0 in

Table 2. However, for illustration of the behavior,

computed values of ðu0v0Þþ are plotted in Fig. 3 for four

values of a1=a2 and three values of aþ2 � aþ1 . At both

walls, the absolute value of ðu0v0Þþ increases rapidly from

zero to a maximum slightly less than unity, then de-

creases more slowly, and finally attains a nearly linear

variation across the central part of the channel.

Values of uþ for the inner region for a1=a2 ¼ 0:01,
0.1, 0.5, and aþ2 � aþ1 ¼ 1000, 10,000, and 100,000 as

obtained by stepwise integration of Eq. (3), starting

from the inner wall and using values of ðu0v0Þþ computed

as just described, are plotted versus yþ in Fig. 4 for

comparison with curves representing the adaption for

annuli of the correlating equation of Churchill and Chan

[11] for the velocity distribution in round tubes and

parallel-plate channels, namely,

ðuþÞ�3 ¼ ðuþ0 Þ
�3 þ ðuþ1Þ�3 ð21Þ
Fig. 3. Computed radial variation
Here uþ1, is given by Eq. (13) with the indicated values of

A, B, and C0 and uþ0 is given by the following expression

designed to correspond to Eq. (12) approximately, while

avoiding a singularity in Eq. (21) as yþ increases far

above the range of validity of that asymptote:

uþ0 ¼ ðyþÞ2

1þ yþ � expf�1:75ðyþ=10Þ4g
ð22Þ

The corresponding values of uþwm for the outer region, as

obtained by integrating from the outer wall, are plotted

in Fig. 5. The separate starting points for the integration

of Eq. (3) for the two regions were necessary to avoid,

near the walls where the velocity is very small, the in-

fluence of accumulative errors due to discretization. No

discrepancies are apparent visually in Figs. 4 and 5 be-

tween the values obtained by integration, as represented

by the discrete symbols, and the curves representing Eq.

(21) although minor ones must exist owing the approx-

imation introduced by the use of Eq. (22) for uþ0 and by

the discordance between the interpolation for ðu0v0Þþ
with a combining exponent of )8/7, and that for uþ with

a combining exponent of )3. Such a good representation

is a significant achievement because it allows the calcu-

lation of accurate values of uþ from an algebraic equa-

tion for any set of values of a1=a2 and aþ2 � aþ1 . This
algebraic expression also expedites comparisons with

experimental data, which are typically determined for

odd values of both a1=a2 and aþ2 � aþ1 .
of the turbulent shear stress.



Fig. 4. Comparison of predictive expression for uþfyþg in the inner region with computed values.

Fig. 5. Comparison of predictive expression for uþfyþg in the outer region with computed values.

M. Kaneda et al. / International Journal of Heat and Mass Transfer 46 (2003) 5045–5057 5051
The computed values of uþ, as represented by Eq.

(21), are compared with the experimental data of Rehme
[14] in Figs. 6 and 7 for the inner and outer regions re-

spectively. The agreement is generally within the scatter



Fig. 6. Comparison of predictive expression for uþfyþg in the

inner region with experimental data of Rehme [12].

Fig. 7. Comparison of predictive expression for uþfyþg in the

outer region with experimental data of Rehme [12].
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of the data. Experimental values for very small aspect

ratios might be expected to be uncertain because of the

difficulty of obtaining perfect alignment of the inner

tube, rod, or wire, and of the likelihood of disturbing the

flow by the devices that maintain the alignment. Hence

the discrepancies between the predictions and measure-

ments in Fig. 6 may have those explanations in part.

The directly computed values of uþm , that is those

based on sw1, as obtained by stepwise integration of the

directly computed values of uþw1 over the cross-section of

the annulus, are listed in Table 3 as a function of a1=a2
and aþ2 � aþ1 . The corresponding values of the Fanning

friction factor, fwm, that is, based on swm, are listed in

Table 4, and the Reynolds number based on the hy-

draulic diameter, Re ¼ 2ðaþ2 � aþ1 Þuþm , in Table 5. Both

the friction factor based on swm and the Reynolds
number may be seen to be virtually independent of a1=a2
except for very small values, whereas uþm varies signifi-

cantly, as would fw1. The Reynolds number, as defined

herein, is independent of the normalizing shear stress on

the wall as long as the same one is used for both uþm and

aþ2 � aþ1 . Values of uþm , fwm, and Re thought to be im-

probable on the basis of the value of C0 for the same

condition are shaded in Tables 3–5, and values resulting

from uncertain convergence in any respect are omitted.

It was noted in the course of this work that the

correlating equation of Danov et al. [2] for a parallel-

plate channel, namely,

1

f

� �1=2

¼ uþm ¼ 4:165þ 1

0:436
lnðbþÞ � 155

bþ
ð23Þ



Table 3

Computed values of uþm (based on sw1)

a1=a2 aþ2 � aþ1

150 500 800 1000 2000 5000 10,000 20,000 50,000 100,000 200,000 500,000

0.01 10.29 11.20 11.60 12.77

0.05 9.64 13.04 14.11 14.59 16.00 17.76 19.04

0.1 10.58 14.21 15.35 15.86 17.37 19.26 20.64 22.00 23.77 25.06

0.2 11.49 15.25 16.46 17.00 18.60 20.61 22.08 23.52 25.40 26.78 28.09 29.59

0.5 12.25 16.31 17.60 18.17 19.88 22.00 23.57 25.11 27.11 28.58 29.99 31.62

0.8 12.49 16.69 18.01 18.61 20.35 22.54 24.14 25.72 27.77 29.28 30.73 32.43

0.9 12.53 16.77 18.10 18.70 20.46 22.65 24.26 25.85 27.92 29.44 30.90 32.61

0.95 12.55 16.80 18.14 18.74 20.50 22.70 24.32 25.91 27.98 29.51 30.97 32.69

0.99 12.56 16.83 18.17 18.77 20.54 22.74 24.36 25.95 28.03 29.56 31.02 32.75

0.999 12.56 16.83 18.17 18.78 20.54 22.75 24.37 25.96 28.04 29.57 31.04 32.76

Table 4

Computed values of Fanning friction factor (�10�3) based on the mean shear stress on the walls and the total flow

a1=a2 aþ2 � aþ1

150 500 800 1000 2000 5000 10,000 20,000 50,000 100,000 200,000 500,000

0.01 8.013 6.755 6.303 5.201

0.05 13.73 7.503 6.414 6.000 4.988 4.049 3.521

0.1 13.26 7.355 6.304 5.903 4.921 4.004 3.485 3.067 2.629 2.365

0.2 12.77 7.240 6.216 5.826 4.866 3.966 3.456 3.043 2.610 2.348 2.134 1.923

0.5 12.64 7.127 6.123 5.740 4.799 3.915 3.413 3.007 2.579 2.320 2.108 1.896

0.8 12.65 7.080 6.077 5.696 4.760 3.883 3.384 2.981 2.557 2.299 2.088 1.875

0.9 12.66 7.069 6.065 5.684 4.749 3.873 3.376 2.974 2.550 2.293 2.082 1.869

0.95 12.67 7.063 6.060 5.679 4.744 3.869 3.372 2.970 2.547 2.290 2.079 1.866

0.99 12.67 7.059 6.055 5.674 4.740 3.865 3.368 2.967 2.544 2.288 2.077 1.864

0.999 12.68 7.059 6.055 5.673 4.739 3.864 3.368 2.967 2.544 2.287 2.076 1.863

Table 5

Computed values of Re ¼ 2ðaþ2 � aþ1 Þuþm (�10�3)

a1=a2 aþ2 � aþ1

150 500 800 1000 2000 5000 10,000 20,000 50,000 100,000 200,000 500,000

0.01 10.29 17.92 23.20 51.07

0.05 2.893 13.04 22.57 29.17 63.99 177.6 380.8

0.1 3.175 14.21 24.56 31.72 69.49 192.6 412.8 880 2377 5012

0.2 3.446 15.25 26.34 34.00 74.41 206.1 441.5 941 2540 5356 11240 29590

0.5 3.674 16.31 28.15 36.35 79.50 220.0 471.4 1004 2711 5717 12,000 31,620

0.8 3.746 16.69 28.82 37.21 81.42 225.4 482.8 1029 2777 5857 12,290 32,430

0.9 3.759 16.77 28.96 37.40 81.83 226.5 485.3 1034 2792 5888 12,360 32,610

0.95 3.764 16.80 29.02 37.48 82.01 227.0 486.4 1036 2798 5902 12,390 32,690

0.99 3.768 16.83 29.07 37.54 82.14 227.4 487.2 1038 2803 5912 12,410 32,750

0.999 3.768 16.83 29.08 37.55 82.17 227.5 487.4 1039 2804 5914 12,410 32,760
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predicts almost the same numerical value of uþm as the

corresponding correlating of Yu et al. [1] for a round

tube, namely,

2

f

� �1=2

¼ uþm ¼ 3:2þ 1

0:436
lnðaþÞ � 227

aþ
þ 50

aþ

� �2

ð24Þ
if bþ is simply replaced by aþ=2. It was thereupon con-

jectured on the basis of the values in Table 4 that re-

placing aþ by aþ2 � aþ1 might result in an approximate

predictive expression for annuli of all aspect ratios, ex-

cept possibly at rates of flow very near the minimum for

fully developed turbulence, that is in the regime in which

the reciprocal term in bþ in Eq. (23) and the reciprocal
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terms in aþ and ðaþÞ2 in Eq. (24) contribute significantly.

A single term in ðaþÞ�1
with a mean value for the coef-

ficient was introduced to represent approximately the

reciprocal terms in both Eqs. (24) and (25), resulting in

2

fwm

� �1=2

¼ ðuþmÞwm

¼ 3:2þ 1

0:436
lnfðaþ2 � aþ1 Þwmg �

275

ðaþ2 � aþ1 Þwm
ð25Þ

Eq. (25) may be re-expressed in terms of Re as follows:

2

fwm

� �1=2

¼ 1:610þ 1

0:436
lnfReg � 550

Reðfwm=2Þ1=2

� 1

0:436
ln

2

fwm

� �1=2
( )

ð26Þ

Eq. (26) is slightly more complicated than Eq. (25) and

requires iterative solution for a specified value of Re, but
convergence is very rapid, and it has the advantage of

being directly comparable with experimental data, which

are ordinarily expressed in terms of Re rather than

ðaþ2 � aþ1 Þwm. Eqs. (24) and (25) have the common lower

limit of applicability of 150 for aþ and bþ, respectively,
which suggests a lower limit of ðaþ2 � aþ1 Þwm ¼ 300 for

Eq. (25) and of Re¼ 10,000 for Eq. (26).

The predictions of Eq. (26) are compared in Fig. 8

with curves representing the computed values of the

Fanning friction factor for four values of a1=a2, as well
as with the experimental values of Lawn and Elliott [5]

for three different but intermediate values of a1=a2. This
Fig. 8. Comparison of predictive expression for the Fanning friction

flow with the computed values and with the experimental data of La
discrepancy in the values of a1=a2 is not important here

because both the experimental data and the curves rep-

resenting the numerically computed values confirm the

conjecture that the parametric dependence on the aspect

ratio is negligible when Re based on the hydraulic di-

ameter or when ðaþ2 � aþ1 Þwm is chosen as the indepen-

dent variable. Furthermore, Fig. 8 confirms that Eq. (25)

provides a good quantitative prediction of the friction

factor for all values of the aspect ratio and Re.
Finally, for illustrative purposes, values of u=um

computed from the predictive expressions for uþ and uþm
are plotted versus the fractional distance across the

channel in Fig. 9 for three or four values of a1=a2 and

three values of aþ2 � aþ1 . The maximum value of the ratio

umax=um may be observed to decrease as both a1=a2 and

aþ2 � aþ1 increase, while the location of that maximum

moves toward the inner wall as a1=a2 decreases and

aþ2 � aþ1 increases.
6. Evaluation of results

The new calculated values presented herein are sub-

ject to some conjectured functionalities as well as to

several empiricisms. One source of arbitrary function-

ality is the postulate that the structure of the expressions

for ðu0v0Þþ, uþ, and uþm for round tubes and parallel-plate

channels is directly applicable for annuli. This postulate

appears to be reasonable in that round tubes and par-

allel-plate channels constitute the bounding cases for

annuli as a1=a2 varies from 0 to 1. One source of em-

piricism is the postulate that, with one exception, the

same numerical values of the arbitrary coefficients and
factor based on the mean shear stress on the walls and the total

wn and Elliott [3].



Fig. 9. Predicted relative velocity distribution over the entire

annulus.
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exponents are applicable. This postulate has the same

rationale as the previous one. It should be noted that

this same structure and these same coefficients and ex-

ponents have previously been shown to predict experi-

mental values of ðu0v0Þþ, uþ and uþm almost exactly for

both round tubes and parallel-plate channels. The

above-mentioned one exception is the allowance of the

coefficient C, re-designated as C0 for the inner region, to

vary with a1=a2 and aþ2 � aþ1 in order to force continuity

of the velocity at the location of the maximum in the

velocity. This choice, which avoids the need to introduce
Table 6

Computed values of ðamax=a1 ¼ a0=a1Þlaminar; sw2=sw1 and swm=sw2 base

a1=a2 0.01 0.1 0.2 0.5

ðamax=a1Þlaminar 32.95 4.637 2.731 1.471

sw2=sw1 8.22� 10�2 0.383 0.543 0.789

swm=sw2 1.111 1.146 1.140 1.089
an additional coefficient, was based primarily on sim-

plicity and does not have a firm rationale. In any event,

as discussed previously, it would not be expected to have

a significant quantitative effect on uþfyþg or uþm .
Eqs. (8) and (9), which have an experimental basis,

are the principal source of empiricism relative to the

prior results for round tubes and parallel-plate channels.

As a severe test of the numerical uncertainty arising

from the use of these two expressions, the calculations

for uþ were repeated using Eq. (10) for both a0 and amax.

The corresponding values of a0=a1 ¼ amax=a1, sw2=sw1,
and swM=sw2 are listed in Table 6 and those of C0 in Table

7. They differ significantly from those in Tables 1 and 2

only for very small values of a1=a2. Values of uþfyþg
and uþm based on C0 from Table 7 were calculated for

representative values of a1=a2 and aþ2 � aþ1 , but since, as
anticipated, they differ negligibly from those based on C0

from Table 2, even for small aspect ratios, they are not

presented herein. These comparisons appear to indicate

that Eqs. (8) and (9) are a negligible source of uncer-

tainty in the computed values and predictive equations.

However, they do not confirm or refute a possible de-

pendence of a0 and amax on Re. The close correspondence
in the values of C0 in Tables 2 and 7 suggests that in the

interests of simplicity Eq. (10) may be used in conjunc-

tion with Eq. (19) to estimate values of C0 intermediate

to those in Table 7. However, it should not be inferred

from the rather minimal error resulting from the use of

(amax ¼ a0Þlaminar to estimate C0 that solutions that in-

corporate this idealization in their basic formulation are

necessarily valid.

How is it possible to represent the friction factor for

all aspect ratios, as in Eqs. (25) and (26), without an

explicit dependence on that quantity? The answer may

be found in Table 1 in the minimal variation of swm=sw1
from unity as a1=a2 varies for a fixed value of aþ2 � aþ1 ,
and in Table 4 in the corresponding minimal variation in

fwm. On the other hand, the choice ðaþ2 � aþ1 Þwm as the

sole independent variable for the friction factor fwm is an

approximation with a purely conjectural basis and is

clearly invalid on theoretical grounds for such small

values of Re that the deviation from the semi-logarith-

mic velocity distribution in the buffer and viscous

boundary layer must be taken into account. The com-

pensatory terms in Eqs. (25) and (26) simply represent

an empirical attempt at a generalized correction for this

regime and thereby the extension of their applicability

down to the point of attainment of fully turbulent flow.
d on Eq. (10)

0.8 0.9 0.95 0.99 0.999

1.123 1.055 1.026 1.005 1.001

0.928 0.965 0.983 0.997 1.000

1.034 1.017 1.008 1.002 1.000



Table 7

Compensatory coefficient C0 for inner region based on Eq. (10)

a1=a2 aþ2 � aþ1

150 500 800 1000 2000 5000 10,000 20,000 50,000 100,000 200,000 500,000

0.01 77.5 25.5 2.36 0.33

0.05 47.2 3.99 1.18 0.02 )2.94
0.1 12.4 4.04 2.18 1.45 )0.4 )2.15 )3.14 )4.11 )6.05
0.2 9.56 4.73 3.65 3.23 2.19 1.19 0.56 )0.02 )0.82 )1.54 )2.47 )4.59
0.5 7.85 5.98 5.58 5.42 5.06 4.67 4.43 4.17 3.76 3.34 2.67 0.96

0.8 7.16 6.55 6.44 6.38 6.27 6.14 6.04 5.93 5.69 5.38 4.83 3.27

0.9 6.98 6.70 6.63 6.61 6.56 6.48 6.43 6.35 6.16 5.89 5.36 3.83

0.95 6.90 6.76 6.73 6.70 6.69 6.64 6.61 6.55 6.37 6.11 5.60 4.08

0.99 6.84 6.81 6.80 6.79 6.79 6.77 6.74 6.69 6.53 6.28 5.78 4.28

0.999 6.825 6.820 6.818 6.817 6.812 6.796 6.773 6.721 6.57 6.32 5.82 4.318
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The best rationale for these several arbitrary choices

is the excellent agreement of the consequent predictions

with experimental data for the time–mean velocity dis-

tribution and the friction factor.

The prior numerical solutions for annuli based on

eddy-viscosity, mixing-length, or j–e models, as well as

those that incorporate idealized expressions for amax

and/or a0, may be dismissed as highly uncertain. Those

based on u0v0, j–e–u0v0, or LES models are free of the

empiricism associated with the use of Eqs. (8) and (9),

and may actually predict amax and a0, but are all subject
to considerable uncertainty because of the use of ‘‘wall-

functions’’. The trade-off is difficult to evaluate in terms

of numerical and functional accuracy, but, in any event,

the theoretically structured predictive equations that are

the end product of the analysis herein are a huge plus

relative to the uncorrelated set of numerical values that

result from the prior methods of modeling. Calculated

values obtained by means of DNS are essentially free of

all empiricism but are still today limited by the magni-

tude of the required computations and perhaps even

intrinsically to values of Re only slightly above the

minimum for fully developed turbulence. They too

produce a set of discrete values differing in structural

character from experimental data only by virtue of their

imprecision and irregularity, and they do not eliminate

the need for correlative equations.
7. Summary and conclusions

On the basis of comparisons with prior experimental

data, the computed values presented herein are pre-

sumed to be more accurate than any prior ones for

annuli with the possible exception of the very limited

range of values obtained by DNS. Also, as contrasted

with all prior theoretical results, they cover a complete

range of flow and of aspect ratio.

The algebraic predictive equations devised herein

reproduce almost exactly the computed values of uþ and
uþm ¼ ð2=f Þ1=2 for all conditions, and accordingly may be

used directly in applications rather than the computed

values. The need for additional numerical integrations is

thereby eliminated until or unless improved expressions

are devised for amax, a0, and/or ðu0v0Þþ.
The use of ðaþ2 � aþ1 Þwm ¼ Reðfwm=8Þ1=2 as the inde-

pendent variable was found to eliminate, for all practical

purposes, the aspect ratio as a parameter in the algebraic

predictive expression for the friction factor, except for

flows closely approaching the minimum for fully devel-

oped turbulence, and even then to provide a reasonably

good numerical approximation.

The predictive expressions for ðu0v0Þþ, uþ and uþm , as
well as the numerically computed values appear to meet

the original objective of providing the necessary input

for the computation of turbulent convection in annuli.

The greater complexity of the expressions for ðu0v0Þþ
and uþ in annuli, as compared with those for round

tubes and parallel-plate channels, reflects the greater

physical complexity of the flow. Even so, these expres-

sions are not onerous to apply, even with a hand-held

calculator.

Eqs. (10) and (21), together with their functional

components, as well as Eqs. (25) and (26), are properly

designated as predictive rather than correlative because

they were formulated without recourse to the experi-

mental data that they are proposed to represent, or to

the computed values, other than in evaluation of the

coefficient C0, as was necessary for compatibility of the

expressions for uþ for the two regions. Because of

the incorporation of theoretically structured asymptotes,

they are quite insensitive to the several empirical coef-

ficients and exponents.
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